Non-flow and Fluctuations: A Systematic Error or
a Killer Measurement?
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Azimuthal Distributions

Are particles emitted at random angles?
No: they remember the initial geometry
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Geometry Fluctuations

If we have space-momentum correlations, then there

should be a lot more to the story than just <v,>

Hama, Grasi, Kodama, Kumar Pruthi, Sorensen Dumitru, Gelis, McLerran,
et. al.

Venugepalan, Lappi

//, i

NexSPheRio

IPsat GCG, Glasma

H. Kowalski, T. Lappi and R. Venugopalan, Phys. Rev. Lett. 100, 022303
[arXiv:0705.3047 [hep-ph]].

Can we get away with ignoring the rest? At what cost?
Can we take advantage of the initial geometry fluctuations?
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Fluctuations

When we imagine v, is
proportional to the initial
eccentricity,

when we imagine €
fluctuations drive v,

fluctuations (integral to
concept of v,/€ ),

we can't escape the other
consequences: large v,

fluctuations for n=1,2,3,4...
and 2-particle correlations
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Boosted Hot-spots for lllustration Purposes

Particles emitted from a finite nurhber of boosted space points

Similar to Mécsy, Sorensen:
nucl-th:0908.3983 submitted to
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The v, fluctuations vs n and p;

o protons; b =6 fm
0.04- #* pions; b =6 fm
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Toy monte-carlo captures v, and v, fluctuations and
predicts v, fluctuations for n=1,2,3,4...
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Implies non-trivial 2-particle correlations
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We can fit with ZYAM + jet or just cos(n) terms

Allowing odd n terms in ZYAM will make it possible to fit
the whole signal -> no jets or cones required
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vV, in data

0y, = (Vavn) = (v V)

033 = <v3v3> - <v3><v3> = <v3v3> = ()
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An Acoustic Expansion of Initial State
Correlations and Fluctuations
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Analogies with the early universe
A rhyming game
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Back to “its not an error, its a measurement”

0 = )= ()0
22} (o2l =) = () + 0% 8,00
vi{4} = 2vivi-vi ~(v,) -0
{224} =04 207

|
If our “standard model” describes the space-momentum

correlations in heavy-ions, it should describe all/most of this term

J

Why? v, X € + eccentricity fluctuations has implications




Comparison to Models

Upper limit challenges models: MC Glauber already
exhausts entire width with participant fluctuations

. . Additive Quark MC:
o, =¥ {4} — v2{2} O part € ) MC Glauber treats confined constituent
= 2 2 — nucleon participants uarks as the participants
<V2> V2 {4} e {2} —*= constituent quark participants gecreases eccin. fluituations
""" color glass (fKLN) Color Glass MC:
includes effects of saturation
increases the mean eccentricity

comparison to hydro (NexSPheRio): Hama
et.al. arXiv:0711.4544

eccentricity fluctuations from CGC: Drescher,

0.2 Nara. Phys.Rev.C76:041903,2007
STAR Preliminary extraction of Knudsen number: Vogel, Torrieri,
0 ‘ 1 | Bleicher. nucl-th/0703031
0 2 4 6 8 10 12 14
impact parameter (b) (fm) fluctuating initial conditions: Broniowski,
Bozek, Rybczynski.
Phys.Rev.C76:054905,2007

first disagreement with €4, and use of
quark MC: Miller, Snellings. nucl-ex/0312008

CATHIE/TECHQM Workshop



A Modest Proposal

Calculate the primordial power spectrum

Turn the hydro crank: Compare to data
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Summary

Strong space-momentum correlations are a prominent
feature of heavy-ion collisions
Large gradients and fluctuations are prominent in the data

Things like length-scales and gradients seem to be central to
estimating eta/s

It would be nice to see if hydro really does make the
connection
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Flow Induced 2-Particle Correlations?

38-46%

Correlations Between All Pairs: HBT, and photon conversion pairs subtracted
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Yield grows faster than N, scaling; onset in peripheral A+A
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Ridge and Cone Phenomenology

Chemical composition of the ridge & cone
» Baryon-to-Meson ratios like the
bulk (p/mm and Kg/A\)

Correlation amplitude
» Correlations increase faster than
Npin OF N, Closer to M(M-1) instead
» Near and Away-side amplitudes
have same centrality dependence

Longitudinal and Azimuthal Width
» both different from fragmentation

pr spectra of the ridge and cone
» Both are soft; like the bulk not like
jet fragments

Suarez: QM08
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What’s So Odd About the Ridge and Cone?

Y. Pandit and P. Sorensen: low p ridge yield
Fourier Transform of data from STAR, T . .
Phys. Rev. Lett. 95 (2005) 152301 STAR Preliminary
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Large possible <v;2> component in intermediate p; data

Centrality dependence is similar to the low p; ridge
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